Scale-Based Local Feature Selection for Scene Text Recognition
نویسندگان
چکیده
منابع مشابه
Local Feature Selection in Text Clustering
Feature selection has improved the performance of text clustering. Global feature selection tries to identify a single subset of features which are relevant to all clusters. However, the clustering process might be improved by considering different subsets of features for locally describing each cluster. In this work, we introduce the method ZOOM-IN to perform local feature selection for partit...
متن کاملPerspective Scene Text Recognition with Feature Compression and Ranking
In this paper we propose a novel character representation for scene text recognition. In order to recognize each individual character, we first adopt a bag-of-words approach, in which the rotation-invariant circular Fourier-HOG features are densely extracted from an individual character and compressed into middle level features. Then we train a set of two-class linear Support Vector Machines in...
متن کاملMMR-based Feature Selection for Text Categorization
We introduce a new method of feature selection for text categorization. Our MMR-based feature selection method strives to reduce redundancy between features while maintaining information gain in selecting appropriate features for text categorization. Empirical results show that MMR-based feature selection is more effective than Koller & Sahami’s method, which is one of greedy feature selection ...
متن کاملSegmentation-based Feature Selection for Text Categorization
Text categorization is an interesting problem in artificial intelligence that gets more and more attention from researchers and industry. One central problem of text categorization is the selection of a good feature set. We propose a novel method for term selection for each category based on segmenting the documents belonging to a category into cohesive sub-parts that define the subtopics of th...
متن کاملFeature Selection based on the Local Lift Dependence Scale
This paper uses a classical approach to feature selection: minimization of a cost function applied on estimated joint distributions. However, in this new formulation, the optimization search space is extended. The original search space is the Boolean lattice of features sets (BLFS), while the extended one is a collection of Boolean lattices of ordered pairs (CBLOP), that is (features, associate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Research in Artificial Intelligence
سال: 2014
ISSN: 2165-4069,2165-4050
DOI: 10.14569/ijarai.2014.030403